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RESUMO

Sistemas móveis estão ocupando uma parcela maior e em constante crescimento no uso de
tecnologia pessoal pela população mundial, com o Android sendo um dos maiores sistemas
operacionais distribuídos no market share. Com isso em mente, testar falhas de segurança
no ambiente Android tornou-se uma tarefa de importância crescente, considerando que esses
testes devem ser reproduzidos em um ambiente controlado. Este artigo propõe uma solução
container-based para um sistema que cria um dispositivo Android emulado com versões de
kernel e Android personalizados. Uma implementação funcional de um framework foi criada
com base no sistema proposto, sendo usada para executar um estudo de caso usando um trigger
de uma vulnerabilidade como exemplo de teste de segurança.

Palavras-chave: Android. Testes de Segurança. Container-based.



ABSTRACT

Mobile systems are occupying a greater, ever growing share in the usage of personal technology
by the word-wide population, with Android being one of the biggest operating systems distributed
in the market share. With that in mind, testing security flaws in the Android environment
became a task with increasing importance, considering that these tests should be reproduced
in a controlled environment. This article proposes a container-based solution for a system that
creates an Android emulated device with a customized kernel and Android versions. A working
framework implementation was created based on the proposed system, being used to execute a
case study using a vulnerability trigger as a security test example.

Keywords: Android. Security Testing. Container-based.
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1 INTRODUCTION

1.1 PROPOSAL

This article has the goal of proposing a solution for creating customized Android environments
in a container for the application of security tests. A orchestrated system will be proposed
for tackling this issue. Then, a framework implementation based on the proposed system is
created, being used later to test the generation of an Android environment for testing a security
vulnerability.

1.2 CHALLENGES

The following changes were encountered in the making of this article:

• Proposing a system for creating a customized Android environment inside a container
environment.

• Provide a framework that allows the implementation of the functionalities of the proposed
system.

• Execute a case study with a security test for testing the framework implementation of
the system.

1.3 MOTIVATION

For the increasing number of vulnerability attacks in mobile devices, the are significantly less
platforms for generating proper environments for testing cybersecurity vulnerabilities and flaws
in mobile devices (Capone et al., 2022). From the mobile operating systems, Android stands out
in terms of open-source accessibility to a variety of tools and repositories for developing and
testing the Android environment (Capone et al., 2022).

Considering the related works studied in this article and the tools available for Android
development, emulation and testing, this article raises the possibility of proposing a system that
can create a heavily customized Android environment for executing security tests in a mostly
automatic way, creating a proper environment using a set of parameters, evaluating with the
proposed system could be implemented and used for reproducing a real security test.

The usage of a container-based approach was to not only to provide an isolated
environment for the running the Android emulated device, but also for the rising usage of
container virtualization in current applications (Capone et al., 2022).



10

1.4 CONTRIBUTION

This article provided the following contributions

• The proposal of a system for creating customized Android environments in a Docker
container using Android Emulator.

• A working framework implementation for creating the proposed system, with a case
study of a security vulnerability as a proof of concept.

The vulnerability for the case study was not created by the studies of this article, but
rather comes from part of a parallel project that included the proposed system in this article,
being only used as a test for creating the environment using the implementation of the framework.
More details of what specific features were not created in this article can be found in Section 5.2.

1.5 DOCUMENT STRUCTURE

This document has the following structure of chapters:

• Chapter 2, Background: specifies some related works to this article, as well as some
vital concepts for understating the remaining sections.

• Chapter 3, Methodology: provides a detailed explanation of the chosen tools used for
the contributions of this article.

• Chapter 4, Proposed System: chapter that explains the proposed system for creating
customized Android emulated device inside a container.

• Chapter 5, Evaluation: Description of the implementation of a framework for the
proposed system, as well as providing a case study for generating a proper Android
environment for a security test.

• Chapter 6, Conclusion: states the conclusions reached in the end of the making of this
article.
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2 BACKGROUND

In this chapter, it will be detailed the required concepts and related works for a better understanding
of this article.

2.1 CONCEPTUALIZATION

2.1.1 Cybersecurity Testing

Cybersecurity testing involves the process of evaluation possible vulnerabilities or potential
threats that can affect computational systems. A vulnerability is a weakness or breach in a
system that allows an possible attacker to exploit it to achieve a specific end goal (National Cyber
Security Centre (NCSC), 2023), being caused by undetected flaws in an given system.

Attackers actively seek and exploit vulnerabilities across multiple different systems,
resulting in multiple areas of interest regarding vulnerability exploitation and mitigation. One
of the resulting projects is the Common Vulnerabilities and Exposures (CVE) project, that
aims to identify, define, and catalog publicly disclosed cybersecurity vulnerabilities (MITRE
Corporation, 2023). The CVE project catalogues multiple vulnerabilities for multiple different
computational systems, differentiating each vulnerability with an unique identifier in the format
"CVE-YYYY-NNNN", where "YYYY" is the year where the vulnerability was assigned, while
"NNNN" is a unique number identifier for the vulnerability.

2.1.2 Linux Kernel and Android Kernel

The Linux Kernel is the core and main component of the Linux Operating System (OS), providing
the main interface between the hardware and processes of a computer or any kind of device with
a running OS. The kernel responsibilities include memory management, process management
(CPU usage by each individual process), interacting with device drivers and dealing with system
calls and with the system’s security (Red Hat, 2023).

The Android Kernel is based on a mainline of the Linux Long Term Supported (LTS)
kernel (a Linux Kernel that has been supported from 4 to 6 years) with Android-specific patches,
with these kernels being named as Android Common Kernels (ACKs), having similar behaviour
and implementation to the Linux kernel (Android, 2023a).

Each Android version has a compatible Android kernel version for running the system.
Many different versions of the Android Kernel source codes are open source, being part of the
Android Open Source Project (AOSP) (Android, 2023b), allowing users to experiment in the
kernel’s code and compilation process, including for security or vulnerability related tests.
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2.1.3 Conteinerization

Conteinerization refers to the process of encapsulating the infrastructure, dependencies, environ-
ment and source code of a running application or program in a single software package called a
container, for ease of distribution and deployment (Amazon, 2023).

Containers are administrated by a container engine, that manages resources between
the container and the operational system. One of well-known container engines are the Docker
Engine (Docker, 2023c), that allows the creation of containers as isolated processes that have a
similar behaviour of a Virtual Machine, encapsulating the system dependencies and application
from the host machine. The key difference between Virtual Machines and containers are that
VMs virtualize hardware, while containers virtualize the operational system (software) (Docker,
2023d).

2.2 RELATED WORK

The article by Capone et al. (2022) proposes a system called DockerizedAndroid, a framework
and platform that allows the creation of emulated, customized Android devices (using Android
Emulator) running in a Docker container, aiming to provide a proper way to generate environ-
ments for exploring Cyber Ranges (simulated teaching environments that allows cyber-security
professionals to test their skills without harming a real system), pointing out the scarcity of cyber
range generation scenarios for mobile devices.

DockerizedAndroid provides a variety of features, including Android Virtual Device
(AVD) execution in Android Emulator, Android applications management, connectivity with the
device with Android Debug Bridge (adb), data collection and other management functionalities,
also providing an User Interface (UI) for interacting with the platform. Later, Capone et al. (2022)
was able to execute a security attack reproduction test in the platform using CVE-2018-7661,
a vulnerability that allows remote attackers to obtain audio data via certain requests through a
Baby Monitor app.

In the context of cyber ranges and security testing, Costa et al. (2022) proposed a
framework for the automatic generation of cyber range scenarios through a proposed created
language, the virtual scenario description language (VSDL). VSDL is a complex customized
language that allows the specifications of the high-level features of the desired cyber range
infrastructure.

The framework uses this language to generate a set of scripts for deploying the customized
cyber range scenario in a IaaS (Infrastructure as Service) provider, using tools like Terraform
(language for infrastructure generation), Packer (defining and customizing OS images) and
OpenStack(cloud infrastructure manager). For injecting vulnerabilities in the infrastructure,
the framework uses a list of of knows a list of known, vulnerable configurations provided by
a database of vulnerabilities (National Vulnerability Database), that are also specified for the
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infrastructure by the VSDL language. Later in the article, Costa et al. (2022) shows an example
usage that uses the framework to generate the scripts for a cyber range scenario configuration.
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3 METHODOLOGY

3.1 TOOLS

This section will describe the tools and technologies that are relevant for understanding this
article.

3.1.1 Docker

Docker is tool for allowing running applications or services in isolated environments, called
containers. This allows the better isolation for multiple different services running as components
in applications, as well a way for distribution of said services using Docker Images and Dockerfiles
(Docker, 2023c). Docker also allows the mounting of volumes that share files between the host
machine and the created containers. One of the tools offered by Docker is Docker Compose,
that allows the definition and running of multiple different containers for applications through a
single file (Docker, 2023a).

Another concept that is explored in this article is the Docker From Docker approach,
used when needed to execute Docker commands inside Docker containers. This approach
mounts the Docker Unix socket, so the executed Docker commands (like running a container) are
transmitted to the host machine (Microsoft, 2023). This means that launching a second container,
inside a first container, will make the second container run alongside the first in the host machine.

3.1.2 Android SDK

The Android SDK (Software Development Toolkit) is a series of open source tools and packages
for developing applications for the Android platform. These tools include Android Emulator,
a emulator system for high-fidelity emulation of Android devices without needing a physical
device (Android for Developers, 2023c).

The Android SDK tools and packages, including Android Emulator, are encapsulated in
an IDE called Android Studio (Android for Developers, 2023e), so they can be managed using
a graphical interface. For using the SDK tools and packages from a command line approach,
Android provides the Android SDK Command Line Tools (Android for Developers, 2023f),
including sdkmanager and avdmanager, that will be better described in the remaining sections.

3.1.3 sdkmanager

The tool sdkmanager, part of the Android SDK Command Line Tools, is used to manage packages
from the Android SDK repository from a terminal, being able to install, update, remove and list
the available packages (Android for Developers, 2023d).
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One of the important types of packages available are the AVD system directory package,
a directory that contains all the necessary system image files for creating an Android Virtual
Device (AVD) for running Android Emulator (Android for Developers, 2023f). For installing
a system directory package, an unique string identifier is used, with the installation command
being:

sdkmanager --install "system-images;apiLevel;variant;arch"

Listing 3.1: sdkamanger installation command for an AVD system directory package

This command retrieves the system directory package from the repository, saving it in a
directory of structure system-images/apiLevel/variant/arch in the defined Android SDK home
path in the machine. This directory contains important files like a boot partition images, a system
image and a default kernel image for the device (Android for Developers, 2023f).

The values apiLevel, variant and arch are values for specifying details about the Android
system images. These values are described as:

• apiLevel (android_api_level): name that represents the Android API Level or identifier
for the Android system images. The Android API level serves as a distinctive identifier
for the framework API revision offered in a particular version of the Android platform
(Android for Developers, 2023g). An example would be android-23, that implies API
Level 23, witch correspond to Android 6.0.

• variant (android_tag): name that corresponds to specific features implemented by the
system images files. An example would be google-apis or android-wear.

• architecture (arch): Represents the CPU architecture used for the system images.

More details about the possible values for these parameters and the correspondence
between the Android API Level and the Android Version can be found in Appendix A.

3.1.4 avdmanager

The avdmanager tools is used for creating and interacting with Android Virtual Devices (AVDs).
An AVD is a configurations that define the characteristics of an Android device (Android for
Developers, 2023b).

An AVD is created with an unique name and a existing system directory package
retrieved from sdkmanager, that specifies the Android version and specifications, with each AVD
being stored in a separate directory in the system. This directory contains modifiable data for the
device, including cache partition image, an SD card partition image and an image for the data
partition for the device (Android for Developers, 2023f). The command for creating an AVD
using a system directory package is shown in Listing 3.2.
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avdmanager create avd --name MyAVD -k "system-images;apiLevel;variant;arch"

Listing 3.2: Creating an AVD with name MyAVD with the system directory package "system-
images;apiLevel;variant;arch".

3.1.5 emulator

Android Emulator creates an emulated device through Android Studio, using a graphic interface,
so the creation of the AVD for the device is done by the UI. The emulator is the command
line counterpart for Android Emulator, allowing the execution of Android Emulator through a
specified, previously created AVD (Android for Developers, 2023f).

There are several flags for running emulator and customize the created device behavior.
For example, like running Android Emulator through Android Studio, emulator starts an
interactive UI for the emulated phone, so the user can interact with the device display, with
features like sound and animations. To disable the graphical interface, there is the flag -no-window,
that disable graphical elements for emulator.

One of the relevant flags for this article is the optional –kernel flag, that allows the
emulated device to run with a customized Android kernel binary image. If this flag is not
specified, emulator runs with the standard kernel for the device, that also comes with the AVD
system directory package retrieved from sdkmanager. Listing 3.3 shows an example of running
emulator with a custom compiled kernel image and with the name of an existing AVD.

emulator -no-window -kernel bzImage -avd MyAVD

Listing 3.3: Running emulator with a custom kernel binary image bzImage with the AVD named MyAVD an the flag
-no-window.

3.1.6 Android Kernel Repository

The Android Open Source Project (AOSP) provides multiple open source tools and repositories
for Android related functionalities (Android, 2023b). One of the results of the project is the
Android kernel repository tree (https://android.googlesource.com/kernel/ ), that contains multiple
Git repositories with the source codes for different Android kernels and related tools. Git is a
version manage tool that allows versioning of code by using repositories, branches and commits,
allowing different versions of the same code to be stored and used.

These repositories can be clonned and be used for compiling a kernel of desired type,
as well as choose branches or commits so the compiled kernel source code can be in a specific
version of implementation. The kernel’s code and compilation process can be customized at will.

For example, its possible compiling the Android Goldfish kernel version 4.14 using
the source code if the repository https://android.googlesource.com/kernel/goldfish is retrieved,
changing to the branch named android-goldfish-4.14-dev.
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3.1.7 adb

Android Debug Bridge (adb) is a command line program that allows communication with a
device using the command line, being able to copy files, install applications or directly access an
Android device’s (real or emulated) environment through the terminal (Android for Developers,
2023a). Android Emulator also integrates with adb, so adb is able to recognize a running device.

The adb commands is a client-server program divided in three components: a client,
responsible for sending adb commands, a daemon, that runs commands on devices, and a server,
that manages the communication with the client and daemon (Android for Developers, 2023a).
An adb client can send commands to a specific server hosted with an IP and port using flags.
Listing 3.4 shows how to see the connected devices in an adb server that is running on a specific
host and port.

adb -H 127.0.0.1 -P 5037 devices

Listing 3.4: Executing an adb command specifying the adb server host and port.

3.2 DESIGN

For the framework’s main programming language, Python was the chosen, for the following
reasons: the ease of use for implementation of complex logic and the availability of free libraries
that allow interactions with most of the proposed system structure’s, like the connection with
databases and storage systems, as well of execution of bash commands from the subprocess1
library (for running and inspecting Docker containers).

For the mobile system for emulation, Android was preferred for being an open source
environment that runs on nearly every device, as long as having multiple external tools that provide
a variety of features (Capone et al., 2022). These tools include the Android SDK Command Line
Tools, for creating the required packages and files, Android Emulator, for emulating the device,
and adb, for allowing interaction with the device by its commands. The AOSP kernel repository
three was used for allowing open source access to the Android kernels source code.

Docker is used for isolating the implementations in containers, allowing a clean
environment for creating the files for the system and for running Android Emulator. Docker also
offers the distribution of customized images for running different types of services using Docker
Hub (Docker, 2023b).

For storing the parameters for the kernel and Android, PostgreSQL was used for being
an open source database provider with many interesting features (PostgreSQL, 2023), including
having its own Docker image postgres2. For the storage of the kernel and Android files, MinIO
was chosen, for being an efficient object storage, utilizing buckets for storing different types
of files in a single way (MinIO, 2023), while also having an available official Docker image

1https://docs.python.org/3/library/subprocess.html
2https://hub.docker.com/_/postgres
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minio/minio3. PostgreSQL and MinIO have also Python libraries for interacting with them,
psycopg24 and minio5.

3https://hub.docker.com/r/minio/minio
4https://pypi.org/project/psycopg2/
5https://pypi.org/project/minio/
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4 PROPOSED SYSTEM

This chapter will propose DroidOrchestrator, an orchestrated system to automate the creation
of customized Android emulated environments for security related testing. The system aims to
provide a solution, in a semi-automatic way, for creating and running an emulated Android device
using Android Emulator, using a specified Android version and a customized Android kernel. For
this, DroidOrchestrator utilizes different components, a database and a storage system to create
and manage the required files for creating the emulated environment. All the system components,
including the database, storage and the emulated device, were designed to work inside Docker
containers.

DroidOrchestrator receives parameters regrading the specification for the device’s
android and kernel. It then generates necessary image files to create the emulated device, storing
their contents in a object storage and their parameters in a SQL database. Two types of images
will be defined in the system:

• android image: a compacted (zip) directory containing all the necessary files (system
images) for running Android Emulator with a specified Android version, tag and
architecture. This directory is a package retrieved from a repository, using the program
sdkmanager, from the Android SDK Command Line tools. This process is done in a
dedicated Docker container.

• kernel image: A binary for a compiled Android kernel. The kernel source code is
retrieved from the Android Kernel repository tree, getting it from a specific repository
name. Once the base kernel code is retrieved, the system uses a set of scripts specified
by the user to compile the Android kernel in a customized way, generating a custom
compiled kernel image. The kernel compilation process is also done in a separate,
dedicated Docker container.

Once the necessary image files for creating the environment are generated, DroidOrches-
trator retrieves them from the storage, creating an Android Virtual Device (AVD) from the
android image. Using the created AVD and the retrieved kernel image, the system runs Android
Emulator in a Docker container, alongside an Android Debug Bridge (adb) server, making it
connectable by an adb client by the host machine. The user can then execute adb commands in
the emulated device running in the Docker container, being able to copy files, install android
packages and execute shell commands inside the device, allowing the execution of security tests,
like vulnerability exploitation.

The following sections will give a detailed explanation of the expected components and
behaviour of DroidOrchestrator.
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4.1 SYSTEM STRUCTURE

4.1.1 Components

DroidOrchestrator is divided in components, with each one with its own defined set of responsibil-
ities that aim to create the customized environment. The components are code implementations,
designed to be isolated in Docker containers, that receive fixed instruction steps from the main
component, the Orchestrator. The components and their functionalities are described bellow:

• Orchestrator: The Orchestrator is responsible for receiving the user’s parameters and
sending them to the other components, calling their functionalities in a fixed order,
aiming to create the customized emulated Android environment.

• KernelBuilder: This component is responsible for creating and storing the required
image files for running an emulated android system. It communicates with a object
storage and a SQL database to store, respectively, the content of the files and their
parameter metadata. The creation of the images of each type (kernel and android) is
done in different Docker containers, isolated from the main component.

• EnvironmentCreator: Has the function of creating the requested emulated device, using
the images created by KernelBuilder, retrieved using the parameters received from the
Orchestrator. The emulated device is also created in a dedicated Docker container.

When implementing the system’s framework (detailed in Section 5.1), the components
being separate instances running in separate Docker containers proved to be challenging, since
Orchestrator would need to communicate with the user, as well as the other two components of
the system. For simplifying the implementation, it was opted to implement the components logic
using scripts, so the Orchestrator logic could be avoided. All scripts have the parameters specified
directly in the implementation, with each script executing a step for creating the emulated device
container: creating the android image, creating the kernel image and running the emulated device.

Besides the components, DroidOrchestrator also works with different storage mech-
anisms and Docker containers. The system’s interactions between the components, database,
storage and containers are represented in Figure 4.1. More information about the database
(Section 4.1.2), storage (Section 4.1.3) and the used Docker containers (Section 4.1.4) can be
found on their corresponding sections.
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4.1.2 Database

When the creation of a image of a given type is requested, an instance with the received parameters
(android image parameters or kernel image parameters, as shows in Figure 4.1) is created in an
SQL database. DroidOrchestrator should know the host, port and database name for the running
database service. This database diagram is represented in Figure 4.2.

There are two main tables: kernel_image and android_image, that are responsible to
storing the received parameters for each image type (detailed in Section 4.3), as well as a foreign
key referencing the build_status_id. The UNIQUE constraint in the parameters avoids duplicated
insertions of the same image information.

The table build_status has a field called status, that is pre-populated with three values:
BUILDING, COMPLETED and ERROR. This field is used to indicate the status of an image
through the build_status_id field. An image with the build_status_id referencing the id of the
entry COMPLETED indicates that the image is completed. The status, in the context of the
system, have the following meanings:

• COMPLETED: Describes that the following image is completed, meaning that the
image creation process was finished successfully. The requested image exists and can
be retrieved from the object storage.

• BUILDING: The image is being created and is not yet completed. Means the component
is still creating the requested image and it is yet not present in the object storage.

• ERROR: Means the image creation process failed due to an error and could not be
stored. When an image is with the status ERROR, its creation needs to be requested
again with the same creation parameters, so the system can update the old entry with
the status BUILDING.

By setting and updating the correct values of the build_status_id for an image entry in
the database, DroidOrchestrator can better control the image creation flow. More details about
the usage of these statuses can be found in Section 4.4.
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Figure 4.2: DroidOrchestrator database diagram.

4.1.3 Storage System

For storing the image files created by the KernelBuilder component, the system uses an object
storage, that has a defined bucket. This bucket is responsible for storing the image files used by
DroidOrchestrator, so the files can be retrieved later to create the emulated Android device. Each
file or image stored in the bucket is defined by a given key, a unique string value that defines only
a single file. For each image type, a pattern was given for the key value and the filename for the
stored file. The pattern used for the key and filename for each image type is described in Figure
4.3 and will be described in details bellow.

For the android image, a zip file, the key value was defined as the concatenation of the
string parameters for the android image (the same that are represented in the android_image
database table), separated by the ’_’ character. And example, if the values for android_api_level,
android_image_tag and architecture are, respectively, android-29, google_apis, x86_64, the
key value would be android-29_google_apis_x86_64, ensuring an unique key value based on
the database unique constraint (Figure 4.2), with the filename for this file is composed by
"android-29_google_apis_x86_64.zip".

For the kernel image, the key value is the same value for the unique kernel_image_tag
database column (kernel_tag parameter). In this case, the filename is defined as the kernel_tag
itself, with no file extensions (since the kernel is a binary image).
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Figure 4.3: Relation between the received parameters, key value and filename in the DroidOrchestrator storage.

4.1.4 Docker Containers

The system executes some tasks inside Docker containers, for practicality and isolation. Each con-
tainer has a defined behaviour when executed, while also containing the necessary dependencies
installed for doing its defined purpose. After a container finishes its defined job, it is removed,
releasing the used resources of the host machine. Each Docker container and its behaviour will
be defined below.

• orchestrator: Contains the implementation of the Orchestrator component, being able
to receive the user’s parameters and coordinate the other components for creating the
emulated device.

• android_fetcher: Has installed the Android SDK Command Line Tools. Is responsible
for retrieving the Android system image files from the sdkmanager repository and
compressing it into a zip file.

• kernel_compiler: Responsible for retrieving the kernel source code from the kernel
repository and compiling it, generating the kernel binary image file. Has dependencies
for compiling and modifying the kernel, including Git and gcc.

• kernel_builder: Responsible for having the implemented code for the KernelBuilder
component. Is able to receive the parameters from the Orchestrator, create the required
kernel image and android image and store it in the database and bucket storage. For
creating the android and kernel images, this container must be able to launch other
containers from itself, so it can execute android_fetcher and kernel_compiler, while
also retrieving the images.

• android_emulator: Container that runs Android Emulator and the adb server. Has
Android SDK Command Line tools installed for creating an Android Virtual Device
(AVD), as well as emulator for running the device.
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• environment_creator: Contains the implementation of EnvironmentCreator, being able
to retrieve the android image and kernel image from the storage and running a separate
android_emulator Docker container.

The database and storage also should have the necessary Docker images for creating
its services in containers, being able to receive connections from the components. As pointed
in Section 4.1.1, the component logic was implemented using a sequence of scripts. Each of
these scripts was run inside a Docker container, to simulate the components’ behaviour, without
considering the Orchestrator. The details about these scripts can be found in Section 5.1.

4.2 SYSTEM WORKFLOW

A detailed workflow for DroidOrchestrator consists of the following steps:

• Step 1, Parameter Specification: The user provides the necessary parameters to
the creation of the environment to the Orchestrator, including the Android Image
Parameters and the Kernel Image Parameters. The user also adds a directory with the
kernel compilation scripts to the Kernel Script Repository. The Orchestrator then sends
the parameters to the other system components.

• Step 2, Images Creation: The component KernelBuilder, with the received parameters
from Orchestrator, checks the database if the requested images (android and kernel)
exist. If not, KernelBuilder launches two other Docker containers, android_fetcher and
kernel_compiler, that create the android image and kernel image, respectively. Once
the images are created, KernelBuilder stores their binaries in the storage (bucket) and
their received parameters in the database, removing the used containers.

• Step 3, Environment Creation: The component EnvironmentCreator, using the received
parameters from Orchestrator, checks if the android image and kernel image are present
in the database. If so, EnvironmentCreator retrieves the images’ binaries from the
bucket storage. Once the images are retrieved, a instance of the android_emulator
container is launched and uses the images to create and Android Virtual Device (AVD)
and run emulator. The android_emulator runs for a specified period of time, then is
removed.

4.3 PARAMETER SPECIFICATION

DroidOrchestrator receives three sets of parameters: android image parameters, kernel image
parameters and environment parameters (illustrated in Figure 4.1). The android image parameters
and kernel image parameters are used in the creation of the android image and the kernel image
by KernelBuilder, being also stored in the database, so the images can be retrieved using the same
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parameters by EnvironmentCreator. The environment parameters are used in EnvironmentCreator,
for specifying some details for running emulated device.

These parameters should be specified directly to the Orchestrator and distributed through
the other components. The way the Orchestrator receives this parameter is not strictly defined,
either it being received from a terminal, a configuration file or or an through an User Interface
(UI). As said before (Section 4.1.1), the implementation of the components logic was made using
a series of scripts, so these parameters are directly specified in each script and are not received
from the user (Section 5.1).

For the creation of the kernel image, a folder with scripts and files for compiling the
specified kernel by the kernel image parameters must be provided by the user, by adding it
directly to a directory, called kernel script repository. These folders have a defined structure
expected by the system.

The remaining subsections will describe the details about each received parameter, as
well as the structure of the kernel script repository.

4.3.1 Android Image Parameters

The android image parameters (android_api_level, android_tag, architecture) correspond to the
ones defined in Section 3.1.3, being used to create an unique string identifier for retrieving a
system directory package, from the Android SDK repository, with the necessary system images
for a specific Android version, variant and architecture.

These parameters are also inserted in the android_image database table (defined in
Section 4.1.2), so the images can identified and retrieve when necessary. Information regarding
these parameters can be found in Appendix A.

4.3.2 Kernel Image Parameters

The kernel image parameters (kernel_name, kernel_tag, architecture) were designed to work with
the AOSP Android kernel repository tree (detailed in Section 3.1.6) and the locally implemented
kernel script repository, that will be detailed in Section 4.3.3.

The kernel name or kernel_image_name refers to the repository name in the
Android kernel repository tree, for example, goldfish, that refers to the repository in
https://android.googlesource.com/kernel/goldfish, being used as a identifier for retrieving an
specific kernel source code for compilation.

The kernel tag or kernel_image_tag serves as an unique identifier, chosen by the user,
for the kernel for DroidOrchestrator, including as a key for storing the kernel in the storage
(Section 4.1.3) and as a directory name in the kernel script repository.

The architecture parameter values is particularly not used for retrieving or compiling the
desired kernel, but serves to identify the target CPU for the kernel, being inserted in the database
as well with the remaining parameters.
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4.3.3 Kernel Script Repository

DroidOrchestrator allows a custom compilation and customization process for an Android kernel,
that can be used for running Android Emulator. For allowing this process of customization for a
kernel, the idea was having the user specify the scripts and required files for compiling a kernel
of a given repository in the AOSP kernel repository tree. The user would specify a directory
containing the structure represented in Figure 4.4, with this structure detailed bellow:

• kernel_name: The first folder in the directory structure, with the same name as the
kernel_name parameter.

• kernel_tag: The second folder in the directory structure, named after the kernel_tag
parameter, being an unique folder name. This folder contains three shell script
files (compile.sh, before_compile.sh, after_compile.sh, with the last two files being
optional) that specify the compilation process of the kernel, as well as a directory called
required_files, containing all the required files for compiling the kernel.

• compile.sh: The main file that executes the kernel compilation process. After running
this script, there must be a valid compiled kernel binary generated.

• before_compile.sh: An utility script that is executed before the compilation process
(compile.sh). This script is optional and only executed if specified.

• after_compile.sh: An utility script that is executed after the compilation process
(compile.sh). This script is optional and only executed if specified.

• required_files: A directory containing all the required files for modifying or customizing
the kernel or its compilation process. If no files are required, this directory should be
empty.
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Figure 4.4: Visual representation of the directory structure that needs to be provided for compiling a kernel using
DroidOrchestrator.

For making this directory usable by DroidOrchestrator, it would be placed inside a
known directory in the system, that will be called kernel script repository. This folder would be
composed of all the directories containing the scripts for compiling the kernels supported by the
system. This structure is represented in Figure 4.5.

Figure 4.5: Visual representation of kernel script repository structure.

This directory structure would be used by DroidOrchestrator for compiling a specific
kernel, since the folder path represented by "kernel_name/kernel_tag" would be unique for each
kernel. The kernel script repository should be accessible by the system, so it is able to compile
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the desired kernel, and by the user, so the structured directory with the kernel scripts can be
specified.

4.3.4 Environment Parameters

The environment parameters (emulator_flags, emulator_runtime, adb_port) are specifications
for the way the emulated device will run.

The emulator_flags parameter represents the flags that the emulator command should
run, specifying the customized details for running Android Emulator. This parameters should be
a list of flags, that are represented by strings.

The emulator_runtime is an integer value, in milliseconds, that represents the maximum
amount of time that the emulated device container should run, being useful for automatically
stopping and removing the emulator container after an given amount of time, avoiding manual
intervention.

The last parameter, adb_port represents in witch port the device should be accessible
for connecting to the emulated device through adb. This port is used to create an dedicated adb
server in the android_emulator container.

4.4 IMAGES CREATION

The two types of images created by DroidOrchestrator, android images and kernel images, are
used for running an emulated device in a Docker container using Android Emulator. These
images are created by KernelBuilder, using the specified set of parameters in Section 4.3. In the
following, it will be detailed how each type of image is created.

4.4.1 Android Images

The creation process of an android image is based on the retrieval of the system directory package
containing the Android system images using sdkmanager. This directory is then compressed into
zip file, being store in a bucket in the system’s object storage.The process can be described with
the following steps:

• Step 1, Insert image information in the database: KernelBuilder checks the database
if there is an instance in the android_image table with the requested android image
parameters. If there is no instance of the image in the database or there is an instance
with status ERROR, The android image parameters are stored in the android_image table
with the status BUILDING. If there is already an instance with the status COMPLETED
or BUILDING in the database, it means that KernelBuilder already created or is creating
the requested android image, so it skips the remaining steps and returns.

• Step 2, Launch the container and retrieve the android system directory package
(android image): A container instance of android_fetcher is launched by KernelBuilder.
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Then, android_fetcher uses sdkmanager to fetch the system directory package from the
repository, corresponding to the given android image parameters(Section 4.3.1). This
directory is then compressed into a zip file and then returned to KernelBuilder.

• Step 3, Storing the image in the object storage: The zip file corresponding to the
android image is stored in the local storage for later use (as described in Section
4.1.3). Then, KernelBuilder updates the instance for the image in the database with the
status COMPLETED. If there was any error while retrieving the android image in the
android_fetcher container, then the image status should be updated with the ERROR
status.

4.4.2 Kernel Images

The process for creating the kernel image is quite similar to the creation of the android image,
being described with the following steps:

• Step 1, Insert image information in the database: KernelBuilder checks the database if
there is an instance in the kernel_image table with the requested kernel image parameters.
If there is no instance of the image in the database or there is an instance with status
ERROR, The kernel image parameters are stored in the kernel_image table with the
status BUILDING. If there is already an instance with the status COMPLETED or
BUILDING in the database, it means that KernelBuilder already created or is creating
the requested kernel image, so it skips the remaining steps and returns.

• Step 2, Launch the container for compiling the kernel (kernel image): A container
instance of kernel_compiler is launched by KernelBuilder. Then, kernel_compiler
clones the repository from the Android kernel repository tree using the kernel_name
parameter. With the cloned repository, kernel_compiler searches for the path correspond-
ing to "kernel_name/kernel_tag" in the kernel script repository, executing, in order,
before_compile.sh, compile.sh, after_compile.sh. After the kernel finishes compiling,
the binary image is returned to the KernelBuilder component.

• Step 3, Storing the image in the object storage: The binary file corresponding to the
kernel image is stored in the local storage for later use (as described in Section 4.1.3).
Then, KernelBuilder updates the instance for the image in the database with the status
COMPLETED. If there was any error while compiling the kernel in the kernel_compiler
container, then the image status should be updated with the ERROR status.

4.5 ENVIRONMENT CREATION

This section will explain how the emulated device is created by the EnvironmentCreator
component, using the specified parameters and available android and kernel images.
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4.5.1 Retrieving the Images

For retrieving the created android image and kernel image that were created by KernelBuilder,
EnvironmentCreator searches the database with the same parameters used to create both images
in the previous step, ensuring that both images are marked wit status COMPLETED in the
database.

For accomplishing this, EnvironmentCreator checks if the image is with status COM-
PLETED from time to time, using a fixed time interval defined in the system. This verification
occurs until a maximum timeout (also defined in the system) is reached or if the image reaches
the status COMPLETED. If the timeout is reached and the image is not completed yet, the system
should return an error. This verification process should be done for both the android and kernel
images before retrieving then from the storage.

4.5.2 Starting the Emulated Environment Container

Once both the android image (zip file) and the kernel image (binary) are retrieved from the
storage, EnvironmentCreator launches the a container android_emulator.

This container starts by uncompressing the android image directory inside the container,
moving the directory to the same path where sdkmanager stores the system directory packages
when installing them. With the Android system directory package available, avdmanager is
used to create and Android Virtual Device (AVD) with said package. Then, the container
launches emulator using the created AVD, the flags specified by the parameter emulator_flags
and the custom kernel image through the command line. The container also starts and adb server
alongside emulator, using the parameter adb_port as its main port for executing adb commands.

Once the android_emulator container starts, EnvironmentCreator checks periodically
if the container is running. Any error while executing the android_emulator that causes the
container to stop should make EnvironmentCreator to finish execution and report the error to
the system. If no error happens while the emulator is running, EnvironmentCreator kills the
container after the period of time specified by the emulator_runtime parameter.
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5 EVALUATION

This chapter will describe an implementation for the DroidOrchestrator system, the limitations
and a case study for creating an emulated environment.

5.1 IMPLEMENTATION

This section will describe the implementation of a framework for creating an Android emulated
environment based on DroidOrchestrator. The chosen technologies and tools for the system can
be found in Chapter 3. Some details about the implementation of the system workflow will be
found in Details about the results of the case study for the implementation, in Section 5.3.

There are some key differences in the implementation of the system and from the
system’s proposal of Chapter 4. These differences will be pointed in 5.4, as well as the limitations
they impose.

5.1.1 Components Implementation

Each one of the main components, KernelBuilder and EnvironmentCreator were implemented
as Python modules. Each module contains classes that implements methods for allowing
KernelBuilder and EnvironmentCreator to work as they were described in Section 4.1.1. The
classes implemented are:

• ImageEnvironmentInterface: This class implements methods for creating and storing
the android and kernel images, as described in Section 4.4. There also methods for
retrieving an image of a given type (android or kernel) from the storage. This class is
part of the KernelBuilder module.

• DockerAndroidEmulator: Class that implements a method for running Android
Emulator in a container, as described in Section 4.5, using the kernel and android
images present in the storage and database. This class is part of the EnvironmentCreator
module.

These classes have attributes with clients for interacting with the database and its cached
values(PostgresDatabase and FixedCacheFromDb), with the storage system (MinIOSampleStor-
age) and to launch and interact with Docker containers (DockerClient), acting as a framework for
creating the necessary files and creating the emulated environment. All these clients are classes,
that were implemented using the Python libraries described in Section 3.2. Figures 5.1 and 5.2
show the class diagrams for both classes.
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Figure 5.1: Class diagram for the ImageEnvironmentInterface class, part of the KernelBuilder module.

Figure 5.2: Class diagram for the DockerAndroidEmulator class, part of the EnvironmentCreator module.

Note that DockerAndroidEmulator has an attribute of ImageEnvironmentInterface, with
this being due to DockerAndroidEmulator using the ImageEnvironmentInterface functions to
retrieve the images from the storage for creating the Android Emulator container.

The Orchestrator component, as mentioned in Section 4.1.1, was not implemented, due
to the complex logic of interacting with the remaining components and communicating with the
user. For allowing a similar behaviour to the DroidOrchestrator system without the Orchestrator,
a set of Python scripts were created for executing the system workflow and create the Android
Emulator container as a proof of concept, utilizing the classes ImageEnvironmentInterface and
DockerAndroidEmulator.
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These scripts do not receive parameters from the user, but instead have the android
image parameters,kernel image parameters and environment parameters specified directly in the
scripts’ code. These parameters were specifically set for creating the emulated environment for
an example case study, that will be described in Section 5.2. Each script will be described bellow.

• First script: test_interface_android.py: This script executes the creation of an android
image, following the workflow described in Section 4.4.1. It launches a container that
retrieves the system directory package from the sdkmanager repository, compresses it in
a zip file and stores it in the storage, while also updating the database with the android
image parameters.

• Second script: test_interface_kernel.py: Compiles a kernel image, executing the
process described in Section 4.4.2. It launches a container that clones the repository
from the Android kernel repository tree, compiling it with scripts specified in the kernel
scripts repository and storing it afterwards.

• Third script: test_emulator_container.py: This scripts, using the images created by the
previous scripts, starts Android Emulator and an adb server inside a Docker container,
as described in Section 4.5.

By executing these scripts in the order, the system workflow for DroidOrchestrator is
maintained, not considering the user interaction. All the scripts run in Docker containers, for
simulating their behaviour inside a Docker environment (more info in Section 5.1.3). Figure 5.3
shows a diagram of the implementation for the case study, considering the described scripts.



35

Fi
gu

re
5.

3:
V

isu
al

re
pr

es
en

ta
tio

n
of

th
e

im
pl

em
en

ta
tio

n
us

in
g

Py
th

on
sc

rip
ts.



36

5.1.2 Database and Storage Implementation

Both the PostgresSQL database and storage were implemented in Docker containers, using their
official Docker images from Docker Hub and are implemented as they were described in Chapter
4.

The database Docker image kernel_builder_postgres is a modified version of the official
postgres image from Docker Hub, with the addition of creating the database with the schema
from Figure 4.2 and populating the build_status database table with the statuses from Section
4.1.2. Listing 5.1 shows the code of the Docker Compose file that runs the database and storage
containers.

14 services:

15 test-builder-postgres:

16 image: kernel_builder_postgres:latest

17 networks:

18 - test_builder_network

19 environment:

20 - POSTGRES_USER=postgres

21 - POSTGRES_PASSWORD=123

22 healthcheck:

23 test: ["CMD-SHELL", "pg_isready -U postgres"]

24 interval: 5s

25 timeout: 30s

26 retries: 3

27 volumes:

28 - test_builder_postgres:/var/lib/postgresql/data:rw

29 test-builder-minio:

30 image: minio/minio

31 networks:

32 - test_builder_network

33 ports:

34 - 9000:9000

35 volumes:

36 - test_builder_storage:/data:rw

37 environment:

38 - MINIO_ACCESS_KEY=minio_access_key

39 - MINIO_SECRET_KEY=minio_secret_key

40 command: server /data

Listing 5.1: The docker-compose.yml file lines that creates the database and storage containers.

For connecting and interacting with the database and storage, the ImageEnvironmentIn-
terface and DockerAndroidEmulator classes receive a configuration file when they are created.
This file is represented in Listing 5.2.
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1 [minio]

2 host=test-builder-minio

3 port=9000

4 bucket=testbucket

5 access_key=minio_access_key

6 secret_key=minio_secret_key

7 https_enabled=false

8

9 [postgres]

10 database=kernel_builder

11 username=postgres

12 password=123

13 host=test-builder-postgres

14 port=5432

Listing 5.2: The configuration file used for specifying the database and storage connection details.

5.1.3 Docker Containers Implementation

The Docker containers implemented are the same from the described in Chapter 4, Section 4.1.4,
with the exception of the orchestrator container, since the Orchestrator component was not
implemented. Each Docker container has a base Docker image of Linux Ubuntu 20.04, with
each container installing the required packages and tools for doing its specific job.

The kernel_builder container has the KernelBuilder Python module installed, being
used for executing the scripts test_interface_android.py and test_interface_kernel.py scripts,
simulating the behaviour of a component running in a Docker container. The same can be said
by the environment_creator container, having the EnvironmentCreator Python module installed
and being used to execute the test_emulator_container.py script, as illustrated in Figure 5.3.

5.2 CASE STUDY

In this section, we will show a case study for the implementation, where an emulated environment
is generate for a specific security test.

5.2.1 Security Test Specification

For the case study, the CVE-2019-22151 was chosen. This CVE exploits a user-after-free (usage
of a structure that has already been freed from memory) in binder.c that aims to allow a privilege
escalation (obtaining high access privileges to software resource through security flaws) in
the Linux Kernel. Binders are interprocess communication mechanisms for Android (eLinux
Community, 2023). This vulnerability was patched in the Linux Kernel versions above 4.14, so
the target kernel version is 4.14 or bellow. The Android version used is Android 10 with access

1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2215
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to the Google APIs. The versions for the system for the given vulnerability can be found in Table
5.1.

This CVE’s trigger is the reproduction of the user-after-free using the binder structures,
while the exploit is the escalation of privileges through the manipulation of the memory addresses
after the trigger. Listing 5.3 shows the program used to trigger the vulnerability. This program
allocates a binder_thread structure, then frees it using the ioctl() function (line 26). This structure
is then freed again after the program ends, permitting a double free of the same structure.

1 #include <fcntl.h>

2 #include <sys/epoll.h>

3 #include <sys/ioctl.h>

4 #include <unistd.h>

5

6 #define BINDER_THREAD_EXIT 0x40046208ul

7

8 int main(int argc, char const *argv[]) {

9 int fd, epfd;

10 //create an epoll event

11 struct epoll_event event = { .events = EPOLLIN };

12

13 //for using binder, we should open the kernel binder module

14 //now, fd is the file descriptor for the binder IPC

15 fd = open("/dev/binder", O_RDONLY);

16

17 //create an epoll instance

18 //’epoll’ API is used when we want to monitor multiple file descriptors

19 epfd = epoll_create(1000);

20

21 //we add (EPOLL_CTL_ADD) an event (&event) associated with a file

descriptor (fd) to our created ’epoll’ (epfd)

22 epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &event);

23

24 //all interactions with the driver is made with the ’ioctl’ function

25 //here, we communicate with the binder we created and exit it

26 ioctl(fd, BINDER_THREAD_EXIT, NULL);

27

28 close(fd);

29 close(epfd);

30

31 return 0;

32 }

Listing 5.3: The trigger.cpp file that generates a use-after-free scenario.
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CVE-2019-2215 Device Specifications
Android Version Android 10 with Google APIs access

Kernel Version
Android Goldfish Kernel 4.14
(with unpatch in binder.c and custom compilation)

CPU Architecture x86-64

Table 5.1: System specifications for the CVE-2019-2215 vulnerability.

The case study will aim to generate a proper an emulated environment for testing the
execution of the trigger for CVE-2019-2215, from the creation of the required kernel image and
android image for the environment, to running Android Emulator and triggering the vulnerability
using adb.

The study involving the CVE-2019-2215 was part of a parallel project done by other
group members that integrated to the proposal of this article. With this in consideration and to
avoid diverging from the topic of this article, the CVE will not be described in great detail, and
will be used exclusively to test the emulated environment generation for this case study. The
following information was received from external sources and not produced by this article:

• The study of the trigger and exploitation of the vulnerability, including trigger.cpp file
and the Makefile that compiles it.

• The parameters for the environment generation, including the Android version (Android
10 with Google APIs) and the Linux Kernel version and type (Goldfish 4.14), including
the scripts and required files for compiling the kernel, that were adapted to be used by
the implementation.

• The commands used to trigger the vulnerability in the emulated device using adb.

5.3 PRELIMINARY RESULTS

This section will show how the environment for the CVE-2019-2215 was generated using the
implementation of the framework.

5.3.1 Parameter Specification

The chosen android image parameters, kernel image parameters and environment parameters are
illustrated in Figure 5.4.
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Figure 5.4: Visual representation of the parameters for CVE-2019-2215.

The android image parameters reflect the android api level, variant and architecture
for the corresponding sdkmanager package, being Android 10 (API level 29) with Google APIs
access. The kernel image parameters specify the repository for the kernel Goldfish Linux Kernel,
a kernel for running in emulated platforms. The kernel_tag was chosen to be an unique way to
identify the kernel in the system, associating it with the CVE number. Both the architecture
parameters are x86_64, so it can run Android Emulator in a machine with a CPU with x86 64
bits architecture that was used in this experiment.

The environment parameters are used to specify the running device specifications. The
emulator_runtime identifies that Android Emulator will run for 600 milliseconds (10 minutes)
before its killed, and adb_port tells that the adb server that allows connection to the device will
run in port 6037. The -show-kernel flag specified that Android Emulator should display the
kernel messages, so the triggered vulnerability can be observed through the kernel logs. The
-no-snapshot and -wipe-data specify that the device should not autosave on boot and should wipe
and reset the user image (partition) on boot, respectively. These last two flags were mainly put
for testing the system behavior with the emulator_flags parameter and for avoiding consuming
more memory while booting.

5.3.2 Kernel Scripts

Figure 5.5 shows the structure for the kernel scripts for the CVE-2019-2215 inside the kernel
script repository, named kernel_repo, that is copied in the Docker container kernel_compiler
when it starts. This script structure follows the described structure in Section 4.3.3, being
executed after the kernel repository is clonned.
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Figure 5.5: Representation of the kernel scripts directory provided for CVE-2019-2215.

The before_compile.sh script (Listing 5.4) changes the kernel repository to a specific
commit (line 11) so it’s in the correct 4.14 version for the vulnerability (Goldfish 4.14), while
also doing an unpatch (reverting a portion of code to an older version) in the binder.c file (line
15) with the cve-2019-2215.patch patch file.

1 #!/bin/bash

2 set -e

3

4 # The following env variables contains important directory information

5 # $ROOT_DIR is the directory where the kernel will be cloned

6 # $REQUIRED_FILES_DIR is the directory where your kernel’s required_files

should be present.

7 # Please copy these files to their correct location in the $ROOT_DIR

8 # $OUTPUT_IMAGE_PATH is where the image should be copied after compiling

9

10 #Set config env varibles

11 COMMIT=’182a76ba7053af521e4c0d5fd62134f1e323191d’

12

13 # Change to correct version

14 git checkout $COMMIT

15 git apply $REQUIRED_FILES_DIR/patch/cve-2019-2215.patch

Listing 5.4: The before_compile.sh script for CVE-2019-2215
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Then, the compile.sh scripts (Listing 5.5) configures and compiles the kernel using
different options and flags. The compilation enables KASAN for the kernel, a dynamic memory
error detector tool (Kernel Development Community, 2023), that will detect if the use-after-free
was possible through showing a message in the device logs.

Both scripts use environment variables to work better inside the Docker container, so
the person writing the scripts can use the environment variables inside the container in a generic
way. These variables are automatically populated when the container for compiling the kernel is
generated.
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9 #Set this var as the location where the image will be after compiling

10 COMPILED_IMAGE_PATH=$ROOT_DIR/arch/x86/boot/bzImage

11

12 #Set kernel config variables

13 export ARCH=x86_64

14 export CLANG_PREBUILT_BIN=prebuilts-master/clang/host/linux-x86/clang-

r377782b/bin

15 export BUILDTOOLS_PREBUILT_BIN=build/build-tools/path/linux-x86

16 export CLANG_TRIPLE=x86_64-linux-gnu-

17 export CROSS_COMPILE=x86_64-linux-gnu-

18 export LINUX_GCC_CROSS_COMPILE_PREBUILTS_BIN=prebuilts/gcc/linux-x86/x86/

x86_64-linux-android-4.9/bin

19

20 cp $ROOT_DIR/arch/x86/configs/x86_64_ranchu_defconfig $ROOT_DIR/arch/x86/

configs/new_defconfig

21

22 $ROOT_DIR/scripts/config --file $ROOT_DIR/arch/x86/configs/new_defconfig \

23 -e CONFIG_KASAN \

24 -e CONFIG_KASAN_INLINE \

25 -e CONFIG_TEST_KASAN \

26 -e CONFIG_KCOV \

27 -e CONFIG_SLUB \

28 -e CONFIG_SLUB_DEBUG \

29 -e CONFIG_SLUB_DEBUG_ON \

30 -d CONFIG_SLUB_DEBUG_PANIC_ON \

31 -d CONFIG_KASAN_OUTLINE \

32 -d CONFIG_KERNEL_LZ4 \

33 -d CONFIG_RANDOMIZE_BASE \

34 -d CONFIG_SECURITY_DROIDSTATS

35

36 make new_defconfig

37

38 echo "#Compiling the kernel"

39 make

40

41 #Copy image to correct location

42 if [ -f $COMPILED_IMAGE_PATH ]; then

43 cp $COMPILED_IMAGE_PATH $OUTPUT_IMAGE_PATH

44 fi

Listing 5.5: The code for the compile.sh script, for compiling the kernel for CVE-2019-2215.
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5.3.3 Kernel Image Creation

The kernel image is created through the test_interface_kernel.py script. This script runs in
a Docker container (illustrated in 5.3), using the command described in Listing 5.6, with the
execution of the command starting the entire process for the kernel image creation.

In line 3, the Docker socket is mounted, allowing the execution of other Docker
commands inside the container (Docker From Docker). The configuration file for the database
and storage (represented in Listing 5.2) is copied to the container in line 5. There also volumes
for accessing the test_interface_kernel.py script itself inside the container (line 6) and for sharing
a common output path between the container and host machine (line 4).

1 docker run --rm --name test_interface_kernel_cont \

2 --network test_builder_network \

3 -v /var/run/docker.sock:/var/run/docker.sock \

4 -v /tmp/output_path:/usr/src/code/output_path:rw \

5 -v $(pwd)/config.conf:/usr/src/code/config.conf:ro \

6 -v $(pwd)/test_interface_kernel.py:/usr/src/code/test_interface_kernel.

py \

7 kernel_builder:latest \

8 python3 test_interface_kernel.py

Listing 5.6: Command for launching the container that runs test_interface_kernel.py.

First, test_interface_kernel.py creates an instance of a class ImageEnvironmentInterface
with the configurations for connecting with the database and storage (Listing 5.7).

32 client = interface.ImageEnvironmentInterface.from_config(

33 config=config, db_section="postgres", minio_section="minio"

34 )

Listing 5.7: Creating ImageEnvironmentInterface class in test_interface_kernel.py script in lines 32 to 34.

Then, the kernel image is created using the function create_image() with the kernel
image parameters (Listing 5.8).

48 client.create_image(

49 type="kernel",

50 name="goldfish",

51 tag="x86_64_CVE-2019-2215",

52 arch="x86_64",

53 output_path=OUTPUT_PATH,

54 output_path_host=OUTPUT_PATH_HOST,

55 )

Listing 5.8: Function for creating a kernel image executed in test_interface_kernel.py in lines 48 to 55.

This function, for the kernel image type, implements the steps for creating the kernel
image described in Chapter 4, in Section 4.4.2. Listing 5.9 shows the code for inserting the image
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information in the database, following Step 1, Insert image information in the database of the
kernel image creation in Section 4.4.2.

338 kernel_image_id = None

339 kernel_result = self._db_pool.select(

340 "kernel_image JOIN build_status USING (build_status_id)",

341 where_values={

342 "kernel_image_name": kernel_name,

343 "kernel_image_tag": kernel_tag,

344 "architecture": arch,

345 },

346 columns=["kernel_image_id", "status"],

347 )

348

349 if kernel_result:

350 if kernel_result[0]["status"] == BuildStatusType.ERROR.value:

351 # Building an image that runned with an error before

352 kernel_image_id = kernel_result[0]["kernel_image_id"]

353 self._logger.warning(

354 f"Entry for {kernel_tag} exists with status ERROR in

database. It will be overriden"

355 )

356 else:

357 # Image is already building/completed

358 raise BuildAlreadyExists(

359 f’Entry for {kernel_tag} already exists with status {

kernel_result[0]["status"]}.’

360 )

361 else:

362 kernel_image_id = self._db_pool.insert(

363 "kernel_image",

364 {

365 "kernel_image_name": kernel_name,

366 "kernel_image_tag": kernel_tag,

367 "architecture": arch,

368 "build_status_id": building_id,

369 },

370 returning=["kernel_image_id"],

371 )

Listing 5.9: Code that inserts the kernel image information in the database for the create_image() function.

Listing 5.10 shows the command for launching the container for compiling the kernel,
starting Step 2, Launch the container for compiling the kernel (kernel image) of Section 4.4.2.
The used kernel image parameters are passed through environment variables to the container.
The output path volume (line 378) is used for saving the image, so its is able to be retrieved from
the container compiling the kernel.
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374 self._docker_client.run_container(

375 "kernel_compiler",

376 container_name=container_name,

377 volumes=[

378 f"{output_path_host}:{ImageEnvironmentInterface.

KERNEL_COMPILER_OUTPUT_DIR}:rw",

379 ],

380 env_variables=[

381 f"KERNEL_NAME={kernel_name}",

382 f"KERNEL_TAG={kernel_tag}",

383 ],

384 remove=False,

385 detached=True,

386 )

Listing 5.10: Code that launches the Docker container for compiling the kernel in the create_image() function.

The container for compiling the kernel kernel_compiler, when started, executes a script
start.sh that clones the repository from the Android kernel repository using the kernel_name.
It then executes the scripts in the kernel script repository corresponding the desired kernel
(described in Section 5.3.2). After the compiling is done, the kernel should be in the output path
directory (Listing 5.11).
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34 echo "Cloning kernel repository for $KERNEL_NAME"

35 git clone https://android.googlesource.com/kernel/$KERNEL_NAME $ROOT_DIR

36

37 echo "Copying required files to $REQUIRED_FILES_DIR"

38 cp -r /root/kernel_repo/$KERNEL_NAME/$KERNEL_TAG/required_files

$REQUIRED_FILES_DIR

39

40 echo "Copying scripts to $ROOT_DIR"

41 cp -r /root/kernel_repo/$KERNEL_NAME/$KERNEL_TAG/*.sh $ROOT_DIR

42

43 if [ -f /root/kernel_repo/$KERNEL_NAME/$KERNEL_TAG/before_compile.sh ];

then

44 echo "Executing before_compile.sh"

45 bash $ROOT_DIR/before_compile.sh

46 fi

47

48 echo "Executing compile.sh"

49 bash $ROOT_DIR/compile.sh

50

51 if [ -f /root/kernel_repo/$KERNEL_NAME/$KERNEL_TAG/after_compile.sh ]; then

52 echo "Executing after_compile.sh"

53 bash $ROOT_DIR/after_compile.sh

54 fi

Listing 5.11: The start.sh script that is executed when the kernel_compiler container is launched

After launching the container, the function inspects the container to see if it finished
running, while also verifying if the compilation process did not reach the timeout (Listing 5.12).
After the container stops, the exit code is checked to see if there was any errors in the kernel
compilation.



48

395 status = self._docker_client.container_status(container_name=

container_name)

396 time_spent = 0

397 while status["Running"]:

398 if time_spent >= ImageEnvironmentInterface.KERNEL_BUILD_TIMEOUT:

399 status["ExitCode"] = 124

400 status["Error"] = (

401 f"Image build timeout of {ImageEnvironmentInterface.

KERNEL_BUILD_TIMEOUT}(s) reached for "

402 f"{kernel_name}_{kernel_tag}"

403 )

404 self._logger.error(status["Error"])

405 break

406

407 self._logger.debug(

408 f"Image for compiling {kernel_name}_{kernel_tag} is still running.

"

409 f"Retrying in {ImageEnvironmentInterface.

KERNEL_COMPILER_RETRY_TIME} seconds"

410 )

411

412 time.sleep(ImageEnvironmentInterface.KERNEL_COMPILER_RETRY_TIME)

413 status = self._docker_client.container_status(container_name=

container_name)

414 time_spent += ImageEnvironmentInterface.KERNEL_COMPILER_RETRY_TIME

415

416 build_status_id = None

417 exit_code = status["ExitCode"]

Listing 5.12: Code that periodicly checks the container kernel_compiler in the create_image() function.

After compiling the kernel, it is saved in the output path directory with the filename
kernel_tag (Step 3, Storing the image in the object storage of Section 4.4.2), then is retrieved
and saved in MinIO storage (Listing 5.13). The database is updated with the status COMPLETED
for the image and then the container is removed.

425 with open(os.path.join(output_path, kernel_tag), "rb") as f:

426 kernel_bytes = io.BytesIO(f.read())

427 self._minio_client.store_file(

428 file_id=kernel_tag, file_bytes=kernel_bytes

429 )

Listing 5.13: Code that stores the compiled kernel image in the storage in the create_image() function.

After executing this process, the script ends and the kernel image for the CVE-2019-2215
is successfully created in the database and storage, being able to be retrieved later for using it
with Android Emulator container. The containers used for running the script and for compiling
the kernel are removed after finishing this process.
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5.3.4 Android Image Creation

The creation for the android image is very similar to the creation of the kernel image, so some
details already described in the previous section will be omitted. The creation starts with the
execution of the test_interface_android.py being executed in a Docker container (Listing 5.14).

1 docker run --rm --name test_interface_android_cont \

2 --network test_builder_network \

3 -v /var/run/docker.sock:/var/run/docker.sock \

4 -v /tmp/output_path:/usr/src/code/output_path:rw \

5 -v $(pwd)/test_interface_android.py:/usr/src/code/test_interface_android.

py \

6 -v $(pwd)/config.conf:/usr/src/code/config.conf:ro \

7 kernel_builder:latest \

8 python3 test_interface_android.py

Listing 5.14: Command for launching the container that runs test_interface_android.py.

Similar to the kernel image creation, an instance of a class ImageEnvironmentInterface
is created in the test_interface_android.py, with the connections for the database and storage.
Then, the android image is created through the create_image() function using the android image
parameters, with the name parameter corresponding to the android_api_level (Listing 5.15).

53 client.create_image(

54 type="android",

55 name="android-29",

56 tag="google_apis",

57 arch="x86_64",

58 output_path=OUTPUT_PATH,

59 output_path_host=OUTPUT_PATH_HOST,

60 )

Listing 5.15: Function for creating a android image executed in test_interface_android.py in lines 53 to 60.

Starting with Step 1, Insert image information in the database for the android image
creation process described in Section 4.4.1, the function inserts the image information in the
database (Listing 5.16).
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517 android_image_id = None

518 android_result = self._db_pool.select(

519 "android_image JOIN build_status USING (build_status_id)",

520 where_values={

521 "android_api_level": android_api_level,

522 "android_image_tag": android_tag,

523 "architecture": arch,

524 },

525 columns=["android_image_id", "status"],

526 )

527

528 if android_result:

529 if android_result[0]["status"] == BuildStatusType.ERROR.value:

530 # fetching an image that runned with an error before

531 android_image_id = android_result[0]["android_image_id"]

532 self._logger.warning(

533 f"Entry for {image_identifier} exists with status ERROR in

database. It will be overriden"

534 )

535 else:

536 # image is already building/completed

537 raise BuildAlreadyExists(

538 f"Entry for the image {image_identifier} already exists with

status"

539 f’{android_result[0]["status"]}’

540 )

541 else:

542 android_image_id = self._db_pool.insert(

543 "android_image",

544 {

545 "android_api_level": android_api_level,

546 "android_image_tag": android_tag,

547 "architecture": arch,

548 "build_status_id": building_id,

549 },

550 returning=["android_image_id"],

551 )

Listing 5.16: Code that inserts the android image information in the database for the create_image() function.

Then, the create_image() function launches the android_fetcher container, as in Step 2,
Launch the container and retrieve the android system directory package (android image) of
Section 4.4.1, for fetching the package with the android system images from the Android SDK
repository (Listing 5.17).
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554 self._docker_client.run_container(

555 "android_fetcher",

556 container_name=container_name,

557 volumes=[

558 f"{output_path_host}:{ImageEnvironmentInterface.

ANDROID_FETCHER_OUTPUT_DIR}:rw",

559 ],

560 env_variables=[

561 f"ANDROID_API_LEVEL={android_api_level}",

562 f"ANDROID_IMAGE_TAG={android_tag}",

563 f"ARCH={arch}",

564 ],

565 remove=False,

566 detached=True,

567 )

Listing 5.17: Code that launches the Docker container for retrieving the android package in the create_image()
function.

The android_fetcher container, when created, executes the start_android_fetcher.sh
script that retrieves the package for the android system images with sdkmanager, then compresses
it in a zip file that is moved to the output path (Listing 5.18).

10 IMAGE_DIRNAME=$ANDROID_API_LEVEL’_’$ANDROID_IMAGE_TAG’_’$ARCH

11 OUTPUT_PATH=/root/output/

12

13 echo "Fetching image from android sdk repository"

14 sdkmanager --install "system-images;$ANDROID_API_LEVEL;$ANDROID_IMAGE_TAG;

$ARCH"

15

16 echo "Ziping image to $OUTPUT_PATH/$IMAGE_DIRNAME.zip"

17 mv system-images/$ANDROID_API_LEVEL $OUTPUT_PATH

18 cd $OUTPUT_PATH

19 zip -r $IMAGE_DIRNAME.zip $ANDROID_API_LEVEL

Listing 5.18: The start_android_fetcher.sh script that is executed when the kernel_compiler container is launched.

The container is inspected from time to time to see if it is still running (Listing 5.19).
When the container stops, the exit code is inspected to see if the image was able to be created.
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574 status = self._docker_client.container_status(container_name=

container_name)

575 time_spent = 0

576 while status["Running"]:

577 if time_spent >= ImageEnvironmentInterface.ANDROID_BUILD_TIMEOUT:

578 status["ExitCode"] = 124

579 status["Error"] = (

580 f"Image build timeout of {ImageEnvironmentInterface.

ANDROID_BUILD_TIMEOUT}(s) reached "

581 f"for {image_identifier}"

582 )

583 self._logger.error(status["Error"])

584 break

585

586 self._logger.debug(

587 f"Image for fetching {image_identifier} is still running. "

588 f"Retrying in {ImageEnvironmentInterface.

ANDROID_COMPILER_RETRY_TIME} seconds"

589 )

590

591 time.sleep(ImageEnvironmentInterface.ANDROID_COMPILER_RETRY_TIME)

592 status = self._docker_client.container_status(container_name=

container_name)

593 time_spent += ImageEnvironmentInterface.ANDROID_COMPILER_RETRY_TIME

594

595 build_status_id = None

596 exit_code = status["ExitCode"]

Listing 5.19: Code that periodicly checks the container android_fetcher in the create_image() function.

Finally, after the image is finishes being retrieved, it is stored in the storage (Step
3, Storing the image in the object storage), using the image identifier (key) and filename
specified in Chapter 4.1.3, composed by the android image parameters, also removing the Docker
containers used in the process. This process completes the creation of the android image for the
CVE-2019-2215.

606 with open(

607 os.path.join(output_path, f"{image_identifier}.zip"), "rb"

608 ) as f:

609 kernel_bytes = io.BytesIO(f.read())

610 self._minio_client.store_file(

611 file_id=image_identifier, file_bytes=kernel_bytes

612 )

Listing 5.20: Code that stores the compressed android image in the storage in the create_image() function.
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501 image_identifier = f"{android_api_level}_{android_tag}_{arch}"

Listing 5.21: the image_identifier initialization for the android image in the create_image() function.

5.3.5 Environment Creation

With both the android image and kernel image for CVE-2019-2215 created as described in the
previous sections, they can be used to create the emulated environment, following the process
described in Section 4.5.

This process is done by the script test_emulator_container.py (Figure 5.3), that is
executed inside a Docker container. The command that initiates the script execution is described
in Listing 5.22. The volumes used are similar to the ones described for the kernel image creation
(Listing 5.6), with the directory images_path acting as the volume between container and host
machine.

1 docker run --rm --name test_emulator_container \

2 --network test_builder_network \

3 -v /var/run/docker.sock:/var/run/docker.sock \

4 -v $(pwd)/config.conf:/usr/src/code/config.conf:ro \

5 -v $(pwd)/test_emulator_container.py:/usr/src/code/

test_emulator_container.py \

6 -v /tmp/images_path:/tmp/images_path:rw \

7 environment_creator:latest \

8 python3 test_emulator_container.py

Listing 5.22: Command for launching the container that runs test_emulator_container.py.

After launching, this script creates an instance of DockerAndroidEmulator class from
the same configuration file for the database and storage (Listing 5.23).

31 client = emulator.DockerAndroidEmulator.from_config(

32 config=config, db_section="postgres", minio_section="minio"

33 )

Listing 5.23: Creating DockerAndroidEmulator class in test_emulator_container.py script in lines 31 to 33.

As mentioned earlier, an ImageEnvironmentInterface is created as an attribute (named
image_interface_client) inside DockerAndroidEmulator, so the functions for interacting with the
android and kernel images can be used (Listing 5.24).
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80 image_interface_client = interface.ImageEnvironmentInterface.from_config

(

81 config=config, db_section=db_section, minio_section=minio_section

82 )

83

84 docker_client = docker.DockerClient()

85

86 return DockerAndroidEmulator(

87 image_interface_client=image_interface_client, docker_client=

docker_client

88 )

Listing 5.24: Creating an ImageEnvironmentInterface instance inside the DockerAndroidEmulator function
from_config(), later being set as an class attribute fro DockerAndroidEmulator.

The creation of the environment starts with the call of the function
start_android_emulator() from DockerAndroidEmulator. This function executes the pro-
cess described in Section 4.5, receiving all the specified parameters for the environment (Figure
5.4), with the particularity of receiving a single architecture for both image types for compatibility.
Listing 5.25 shows the execution of the function.

37 client.start_android_emulator(

38 kernel_name="goldfish",

39 kernel_tag="x86_64_CVE-2019-2215",

40 android_api_level="android-29",

41 android_tag="google_apis",

42 arch="x86_64",

43 output_path=OUTPUT_PATH,

44 output_path_host=OUTPUT_PATH,

45 emulator_flags=["-show-kernel", "-no-snapshot", "-wipe-data"],

46 emulator_runtime=600,

47 adb_port=6037,

48 )

Listing 5.25: Execution of the function start_android_emulator() in test_emulator_container.py.

The function starts by waiting for both the android image and kernel image to be ready
for being retrieved, that is, having the status COMPLETED in the database. This is done by the
wait_for_image() function (Listing 5.26 and Listing 5.27).
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156 self._image_interface_client.wait_for_image(

157 image_type=interface.ImageEnvironmentInterface.KERNEL_IMAGE_TYPE,

158 image_name=kernel_name,

159 image_tag=kernel_tag,

160 arch=arch,

161 output_path=output_path,

162 filename=kernel_image_id,

163 )

Listing 5.26: Execution of the function wait_for_image() for the kernel image, inside the start_android_emulator()
function

180 self._image_interface_client.wait_for_image(

181 image_type=interface.ImageEnvironmentInterface.ANDROID_IMAGE_TYPE,

182 image_name=android_api_level,

183 image_tag=android_tag,

184 arch=arch,

185 output_path=output_path,

186 filename=f"{android_image_id}.zip",

187 )

Listing 5.27: Execution of the function wait_for_image() for the android image, inside the start_android_emulator()
function

The wait_for_image() from the ImageEnvironmentInterface function accomplishes that
by checking the database periodically for the images, until a given timeout, for each image type.
After the images finished BUILDING, the wait_for_image() retrieves them from the storage,
saving the files in the a output path directory. The images are retrieved from the storage using a
key (identifier), being the same as the described in Section 4.1.3.

147 android_image_id = f"{android_api_level}_{android_tag}_{arch}"

148 kernel_image_id = kernel_tag

Listing 5.28: The image indentifier (key) value for both the image types
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758 time_spent = 0

759 while time_spent <= timeout:

760 if self.has_image(

761 image_type=image_type,

762 image_name=image_name,

763 image_tag=image_tag,

764 arch=arch,

765 statuses_to_check=[BuildStatusType.BUILDING],

766 ):

767 self._logger.debug(

768 f"Waiting for image {image_identifier} of type ’{image_type}’

to finish building"

769 f"Retrying in {retry_time} seconds"

770 )

771 time.sleep(retry_time)

772 time_spent += retry_time

773 else:

774 break

775 if time_spent >= timeout:

776 raise ImageNotReady(

777 f"The requested image {image_identifier} of type ’{image_type}’

did not finish building"

778 f"after the given timeout of {timeout} seconds"

779 )

780 if self.has_image(

781 image_type=image_type,

782 image_name=image_name,

783 image_tag=image_tag,

784 arch=arch,

785 statuses_to_check=[BuildStatusType.COMPLETED],

786 ):

787 return self.get_image(

788 image_identifier=image_identifier,

789 output_path=output_path,

790 filename=filename,

791 )

Listing 5.29: Logic in the wait_for_image() function that checks if the images are ready, then retrieves them from
the storage to an output path directory.

Once the images are ready and retrieved in the output path, they are used to launch
a Docker container to run Android Emulator, with the command shown in Listing 5.30. This
container receives the parameters using environment variables, receiving the identifier for each
image type as in Listing 5.28 (lines 765 and 766) and also the path were the images are saved, so
they are retrievable by the Android Emulator container (lines 762 and 770).

The container also receives additional flags enabling the devices of the host machine in
the container that are used by Android Emulator. The "–device /dev/kvm" flag (lines 776 and 777)
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enables the Kernel-based Virtual Machine (KVM) device, allowing the needed virtualization.
The flag "–privileged" (line 778) enables other host machines devices that Android Emulator
might access. In the end, the port for adb is set by an environment variable (line 769) and
exposed by the "-p" flag (lines 774 and 775), so the container can be accessed by adb from the
host machine by the specified adb_port parameter.

758 self._docker_client.run_container(

759 "android_emulator",

760 container_name=container_name,

761 volumes=[

762 f"{output_path_host}:{DockerAndroidEmulator.

DEFAULT_EMULATOR_IMAGES_DIR}:rw",

763 ],

764 env_variables=[

765 f"ANDROID_IMAGE_NAME={android_image_id}",

766 f"KERNEL_IMAGE_NAME={kernel_image_id}",

767 f"ARCH={arch}",

768 f"EMULATOR_FLAGS={emulator_flags_string}",

769 f"ANDROID_ADB_SERVER_PORT={adb_port}",

770 f"IMAGES_PATH={DockerAndroidEmulator.

DEFAULT_EMULATOR_IMAGES_DIR}",

771 ],

772 network_name=network_name,

773 additional_flags=[

774 "-p",

775 f"{adb_port}:{adb_port}",

776 "--device",

777 "/dev/kvm",

778 "--privileged"

779 ],

780 remove=False,

781 detached=True,

782 )

Listing 5.30: Command that launches the container running Android Emulator in the start_android_emulator()
function.

When the container starts, it executes the script start_android_emulator.sh (Listing
5.31). It starts by uncompressing the android image zip file in the system-images/ directory
used by avdmanager (line 18). Then, it creates an AVD for the system image (line 27), using
the "$SKD_ID" variable, that corresponds to the identifier for the sdkmanager package for the
android image ("android-29;google-apis;x86_64"). The adb server is started (line 30) and
Android emulator is executed with the created AVD, kernel image and with the specified emulator
flags (lines 35 to 38).
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17 echo "Unziping android image zip to android system-images path"

18 unzip $IMAGES_PATH/$ANDROID_IMAGE_NAME.zip -d system-images/

19

20 AVD_NAME=$ANDROID_IMAGE_NAME’_’$KERNEL_IMAGE_NAME’_AVD’

21

22 #Gets system image dir path based on the ARCH (gets the dir structure to

the android image and replaces ’/’ with ’;’)

23 SDK_ID=$(find system-images/ -name $ARCH -print | tr ’/’ ’;’)

24

25 #echo is to avoid Do you wish to create a custom hardware profile? [no]

26 echo "Creating AVD for the android image $SDK_ID"

27 echo no | avdmanager create avd --name $AVD_NAME -k "$SDK_ID"

28

29 echo -e "\nRunning adb server (no daemon) in background"

30 adb -a nodaemon server start &

31

32 echo "Running emulator command:"

33 echo "emulator $NO_INTERFACE_FLAGS $EMULATOR_FLAGS -kernel $IMAGES_PATH/

$KERNEL_IMAGE_NAME -avd $AVD_NAME"

34

35 emulator $NO_INTERFACE_FLAGS \

36 $EMULATOR_FLAGS \

37 -kernel $IMAGES_PATH/$KERNEL_IMAGE_NAME \

38 -avd $AVD_NAME

Listing 5.31: Command that launches the container running Android Emulator in the start_android_emulator()
function.

After the container for the device starts, the start_android_emulator() function periodi-
cally checks if the container is still running without errors. Then, it kills the container after 600
milliseconds, determined by the emulator_runtime parameter (Listing 5.32). For this period of
time, the device is accessible through adb.
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239 status = self._docker_client.container_status(container_name=

container_name)

240 time_spent = 0

241 while status["Running"] and time_spent <= emulator_runtime:

242 self._logger.debug(

243 f"Emulator container {container_name} is still running. "

244 f"Checking status in {DockerAndroidEmulator.

DEFAULT_EMULATOR_CHECK_TIME} seconds"

245 )

246 time.sleep(DockerAndroidEmulator.DEFAULT_EMULATOR_CHECK_TIME)

247 time_spent += DockerAndroidEmulator.DEFAULT_EMULATOR_CHECK_TIME

248 status = self._docker_client.container_status(container_name=

container_name)

249

250 if status["ExitCode"] != 0:

251 logs = self._docker_client.container_logs(container_name=

container_name)

252 error_message = f"Emulator for {container_name} had an error while

runing. Printing logs:\n{logs}"

253 self._logger.error(error_message)

254 self._docker_client.remove_container(container_name=container_name)

255 raise EmulatorExecutionError(error_message)

256 self._logger.debug(

257 f"Finishing execution and removing container for {container_name}."

258 f"Maximun runtime of {emulator_runtime} reached"

259 )

260 self._docker_client.stop_container(container_name=container_name)

261 self._docker_client.remove_container(container_name=container_name)

Listing 5.32: Loop in the start_android_emulator() that checks if the container running Android Emulator is running,
killing and removing if after the specified time.

5.3.6 Triggering the Vulnerability

Through the process described in the previous sections, the framework implementation was
able to generate an container running an vulnerable emulated device that is accessible through
adb. With the running environment, now its possible to try triggering the vulnerability for
CVE-2019-2215. This process involves the following steps: connecting with the device using
adb, sending the compile trigger program to inside the device and executing it, then retrieve the
devices logs to see if the user-after-free situation was able reproduced.

For reproducing this, we use the script trigger.sh, represented in Listing 5.33. First, we
use the command adb devices (line 4), that connects to the adb server using port 6037 (specified
using the adb_port parameter), showing the available devices. Since there is only a single
available device running, adb connects to it, so the next commands will target the device that is
running the vulnerable environment.
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The file cve-2019-2215-trigger, the compiled executable of the program trigger.cpp of
Listing 5.3, is moved to the path "data/local/tmp" inside the device with the adb push command
(line 7) and is executed in that path using the adb shell command (line 10). After executing the
trigger, the device kernel logs are retrieved through the adb logcat command, saving them in the
local hots machine file syslog.txt.

1 #!/bin/bash

2

3 # Show devices running, connects to the device

4 ./adb -P 6037 devices

5

6 # Pushes trigger executable in /data/local/tmp inside emulated device

7 ./adb -P 6037 push ./cve-2019-2215-trigger /data/local/tmp

8

9 # Executes trigger inside emulated device

10 ./adb -P 6037 shell "./data/local/tmp/cve-2019-2215-trigger"

11

12 # Fetches kernel logs from device

13 ./adb -P 6037 logcat -d -b kernel > syslog.txt

Listing 5.33: The script trigger.sh that triggers the vulnerability inside the Android Emulator device running in the
Docker container.

After running the script, the message of Listing 5.34 were present, indicating a user-
after-free situation was identified by KASAN from the process of the executing CVE-2019-2215
trigger program. This message asserts that the vulnerability of CVE-2019-2215 is indeed present
in the generated Android Emulator container environment from the implementation.

1 11-24 00:15:54.854 0 0 E :

==================================================================

2 11-24 00:15:54.855 0 0 E BUG : KASAN: use-after-free in

_raw_spin_lock_irqsave+0x33/0x57

3 11-24 00:15:54.857 0 0 E : Write of size 4 at addr ffff888043ca80a8 by

task cve-2019-2215-t/6967

Listing 5.34: The portion of syslog.txt that indicates an use-after-free message from KASAN.

5.4 LIMITATIONS

This section will describe some of the limitations of the implemented framework.

5.4.1 User Interaction

Since the workflow of the components was implemented using scripts, the parameters are not
received by the user, but are directly specified in each script that uses them. The directory
containing the scripts for compiling the kernel can still be placed in the kernel script repository.
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The system is unable to receive parameters from the user in a interactive way, so the user needs to
edit the parameters inside the code of each script for generating a different emulated environment.
This limits the user interaction, allowing possible errors while editing the direct source code of
the scripts, with the addition of needing the to execute the scripts in order and manually resolving
errors caused by failed executions in the database and storage.

The specified kernel scripts for compiling the kernel also needs to be directly put
inside the kernel repository folder, witch needs to be a known directory location and also being
susceptible for human error, for example, the accidental override of an folder container the kernel
scripts for another security test. As mentioned in Section 5.3.2, the scripts use environment
variables for executing the compilation process correctly inside the container in a transparent
manner, implying that the code for compiling the desired kernel for a security test needs to be
substantially adapted, while also following the scripts structure specified for the system in Section
4.3.3.

5.4.2 Component Communication

As mentioned in the previous sections, some limitations of the implementation, compared the
proposed system, are caused by the missing Orchestrator component, as well as the KernelBuilder
and EnvironmentCreator components being implemented as scripts instead of actual, message-
receiving components. The implementation of the components using scripts limits the parallel
management of the components functionalities for creating the Android Emulator container.
While error handling was implemented in the frameworks functions, the error treatment is also
limited by the implementation using scripts, that were implemented with complex error handling
features for the system as a whole.

5.4.3 Emulation Challenges

Running Android Emulator inside a Docker container may limit the behaviour of the emulated
device testing. This behaviour was not fully explored while implementing the component, more
specifically in the testing the behaviour of some features in the Android device, like Bluetooth
and other network related tools present in an Android device. More testing with different type
of vulnerabilities may be needed to improve the framework so its able to properly adapt the
environment for different types of security tests.
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6 CONCLUSION

In this article, it was provided the specification of the orchestrated system DroidOrchestrator,
designed to generate customized Android emulated environments using Android Emulator, with a
containerized approach. With the system specification, it was provided a working implementation
of a system framework that allows the creation of a customized Android Emulator environment
in a Docker container.

The implementation allows the customization of both the android versions and the kernel
image compilation process for generating a vulnerable, customized device, coordinating Docker
container executions for creating the required files while also interacting with a database and
storage systems. This concludes that the proposed system implementation is indeed possible and
can work as intended, providing valuable information on how to run the emulated device using
Android Emulator inside a Docker container.

The limitations of the current implementation were also pointed. Although the solutions
for said limitations were not described in this article, their evaluation may serve as interesting
subjects for future works involving customized Android environments generation.

This document also provided a case study that generates a vulnerable in Android
Emulator inside a container, being able to reproduce the CVE-2019-2215 vulnerability trigger
(use-after-free in a binder structure) inside the generated device though interacting with it using
adb.
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APPENDIX A – ANDROID VERSIONS FOR SDKMANAGER

A.1 POSSIBLE PARAMETER VALUES FOR SDKMANAGER SYSTEM PACKAGES

In Table A.1 are listed the possible values for the parameters (android_api_level, android_tag,
architecture) composing the system directory package name format for sdkmanager, that is:
"system-images;android_api_level;android_tag;architecture".

All the data was extracted using the command "sdkmanager –list" in sdkmanager with
Android SDK command-line tools version 8.0. Not all combinations of this parameters are a
valid system directory packages, for example, using the mips value for architecture, the only
packages available are "system-images;android-16;default;mips" and "system-images;android-
17;default;mips", so a valid combination of parameters must be selected based on the list given
by sdkmanager, with 200 available system directory packages in total.
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A.2 ANDROID API LEVEL AND ANDROID VERSION CORRELATION

In Table A.2, there will be the corresponding Android Versions for each Android API Level
(Android for Developers, 2023g).

Android API Level Android Version Code Name
android-34 Android 14 UPSIDE_DOWN_CAKE
android-33 Android 13 TIRAMISU
android-32 Android 12 S_V2
android-31 Android 12 S
android-30 Android 11 R
android-29 Android 10 Q
android-28 Android 9 P
android-27 Android 8.1 O_MR1
android-26 Android 8.0 O
android-25 Android 7.1 to 7.1.1 N_MR1
android-24 Android 7.0 N
android-23 Android 6.0 M
android-22 Android 5.1 LOLLIPOP_MR1
android-21 Android 5.0 LOLLIPOP
android-20 Android 4.4W KITKAT_WATCH
android-19 Android 4.4 KITKAT
android-18 Android 4.3 JELLY_BEAN_MR2
android-17 Android 4.2 to 4.2.2 JELLY_BEAN_MR1
android-16 Android 4.1 to 4.1.1 JELLY_BEAN
android-15 Android 4.0.3 to 4.0.4 ICE_CREAM_SANDWICH_MR1
android-14 Android 4.0 to 4.0.2 ICE_CREAM_SANDWICH
android-10 Android 2.3.3 to 2.3.7 GINGERBREAD_MR1

Table A.2: Android API Levels and their corresponding Android Version ranges
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